204 research outputs found

    Research in and application of state variable feedback design of guidance control systems for aerospace vehicles Progress report

    Get PDF
    Weighted least squares parameter estimation, Kalman filter, and random search problems for aerospace guidance control system desig

    Limits to consistent on-line forecasting for ergodic time series

    Full text link
    This study concerns problems of time-series forecasting under the weakest of assumptions. Related results are surveyed and are points of departure for the developments here, some of which are new and others are new derivations of previous findings. The contributions in this study are all negative, showing that various plausible prediction problems are unsolvable, or in other cases, are not solvable by predictors which are known to be consistent when mixing conditions hold

    Weakly Convergent Nonparametric Forecasting of Stationary Time Series

    Full text link
    The conditional distribution of the next outcome given the infinite past of a stationary process can be inferred from finite but growing segments of the past. Several schemes are known for constructing pointwise consistent estimates, but they all demand prohibitive amounts of input data. In this paper we consider real-valued time series and construct conditional distribution estimates that make much more efficient use of the input data. The estimates are consistent in a weak sense, and the question whether they are pointwise consistent is still open. For finite-alphabet processes one may rely on a universal data compression scheme like the Lempel-Ziv algorithm to construct conditional probability mass function estimates that are consistent in expected information divergence. Consistency in this strong sense cannot be attained in a universal sense for all stationary processes with values in an infinite alphabet, but weak consistency can. Some applications of the estimates to on-line forecasting, regression and classification are discussed

    Nearest Neighbor Estimators for Random Fields

    Get PDF
    AbstractGeneralizing the random sequence case, this study defines a k - NN density estimator for random variables with multidimensional lattice points serving as index values. The central result is that under random field stationary and mixing assumptions, as well as standard smoothness postulates, our k - NN estimate is found to be asymptotically normal. This result readily extends to NN-type estimates for jointly distributed random variables. For illustration, a simplified version of the k - NN estimator is applied to obtain the density estimate for a soil-moisture data set selected from the geostatistical literature

    Pointwise consistency of the kriging predictor with known mean and covariance functions

    Full text link
    This paper deals with several issues related to the pointwise consistency of the kriging predictor when the mean and the covariance functions are known. These questions are of general importance in the context of computer experiments. The analysis is based on the properties of approximations in reproducing kernel Hilbert spaces. We fix an erroneous claim of Yakowitz and Szidarovszky (J. Multivariate Analysis, 1985) that the kriging predictor is pointwise consistent for all continuous sample paths under some assumptions.Comment: Submitted to mODa9 (the Model-Oriented Data Analysis and Optimum Design Conference), 14th-19th June 2010, Bertinoro, Ital

    Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming

    Get PDF
    In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution

    A Review of Multi- Compartment Infectious Disease Models

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156488/2/insr12402.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156488/1/insr12402_am.pd
    • 

    corecore